Fostering a sustainable future: Risk governance and the role of society in the development of nanotechnologies

Christian Beaudrie

Institute for Resources, Environment and Sustainability (IRES) - University of British Columbia

UCSB - Center for Nanotechnology in Society (CNS)

Compass Resource Management Ltd.

What is Risk Governance?

Risk governance describes structures and processes for collective risk-related decision-making involving governmental and non-governmental actors (Renn, 2008)

- Expands beyond the traditional elements of risk analysis:
 - risk assessment, risk management, and risk communication
- Recognition that assessment and management of risk occurs within social systems: 'acceptable risk' is often socially constructed, rather than objectively defined
- Cross-cutting, includes consideration of legal, institutional, social, and economic contexts in which risk is evaluated
- Involves the actors and stakeholders who represent those contexts.

Risk Governance (cont'd)

- Rather than communication as 'information OUT', it invites dialogue and engagement with affected parties throughout the process:
 - Governments and agencies
 - Industries
 - Scientists and academia
 - Civil society / NGOs
 (at the local, regional, national, or global scales)
- Risk assessed and managed through a collection of actions by various parties
- Focus on transparency, inclusion, understanding of risk, and decisions

Nano through the lens of Risk Governance

Nanomaterials characterized by:

- Uncertainty human health and environmental risks
- 'Different' behaviour compared to bulk materials
- Rapid growth, soon to be ubiquitous
- Clear benefits but uncertain risks

Risk Governance provides a framework for understanding complexities of nano in society

- Understanding risks
- Engagement and communication of risks
- Managing risks
- Decision making and policy

Understanding Risk

Risk Assessment

What supporting data do we need? What's available?

What tools and processes are available for assessing risk? Are they adequate?

- Data generation characterization, toxicity, exposures
- Environmental Fate & Transport
- Life Cycle Assessment

- Development of new tools and techniques:
 - HTS, Alternative Test Strategies
 - *in silico* methods QSARs, informatics
 - Databases as sharing and discovery tools
 - Decision support tools

SRA-ENMSG International Workshop, DC, 2014 Advancing Risk Assessment for NM using ATS

- Scientific Barriers
 - Difficult to test NMs using existing assays
 - Lack of standardized data (method development, validation)
 - High bar for validation relevance, reproducibility
- Promote tiered-testing strategies
- Develop grouping, read-across, multi-models approach
- Compliment vs replacement of in vivo tests

The use of ATS in lieu of *in vivo* testing for regulatory risk assessment or management purposes is not yet at the level of general acceptance

(Nel et al 2013; Shatkin et al 2015 – under review)

Managing Risks

Do risks outweigh the benefits?

How to manage risks across life stages and for various users?

Are regulations adequate? Is there a need for new regulations?

Management Actions

Occupational exposures and controls Attenuating hazards/exposures (i.e., Safe By Design)

Regulation

Top Down vs. Bottom Up
How to promote innovation while
managing risk?
Do NMs slip through the cracks?

Regulation along the NM Life-Cycle

- Existing requirements not appropriate for nano
 - Mass-based applicability thresholds, exemptions
 - Definitions do not account for nanospecific properties or behavior (bulk)
 - Lack of tools and data difficult to assess, regulate
- Path Forward
 - Limit CBI, improve data sharing
 - RA tool development
 - Full life-cycle stewardship, better integration between regulations

Beaudrie, C.E.H., Kandlikar, M., Satterfield, T. From Cradle-to-Grave at the Nanoscale: Gaps in US Regulatory Oversight along the Nanomaterial Life Cycle. <u>Environmental Science & Technology</u>, 47 (11), pp 5524–5534 (2013)

Nanotechnologies and Society

Risk Perceptions

How are risks understood by the public? By scientists and other experts? How will NMs be received? Will they be accepted/rejected? What factors drive perceptions of benefits and risks?

- Can inform how to engage, communicate risks
- What gets attention depends largely upon perceptions

Satterfield, T., Kandlikar, M, **Beaudrie, C.E.H**., Conti, J., Harthorn, B.H. Anticipating the Perceived Risk of Nanotechnologies: Will They Be Like Other Controversial Technologies? <u>Nature</u> Nanotechnology 4, 752-758, (2009)

Nanotechnologies and Society

Risk Communication

- Consent, labeling, warnings
- Education and outreach (with stakeholders, incl. public, scientists and technologists)

Foresight, Engagement, and Integration

 Anticipatory governance – How can we manage risks early, promote reflexivity, engage and construct visions of the future?

Conclusion

Fostering a sustainable future for nanotechnologies means:

- Engaging civil society, governments, public, industries in the process of innovation, and understanding and managing risks
- Integrating scientific, economic, social, and cultural perspectives
- Integrating across the natural, engineering, and social sciences

Presentations

- LCA and stakeholder engagement Kaitlin Vortherms, ASU
- Science communication in nanotechnology teams Margaret M. Brooks, ASU
- Perceptions Predicting factors impacting attitudes and acceptance Rajani Ganesh Pillai
- Adoption of ATS within Regulatory Frameworks Tim Malloy, CEIN UCLA
- Engagement and training with scientists and engineers Ira Bennett and Rae Ostman, ASU

Acknowledgements

- ****** Center for Nanotechnology in Society (CNS-UCSB), Barbara Harthorn
- ****** Center for Environmental Implications of Nanotechnology (UC-CEIN), Andre Nel
- Society for Risk Analysis (SRA), Emerging Nanoscale Materials Specialty Group, Jo Anne Shatkin
- ** Institute for Resources, Environment and Sustainability (IRES), at University of British Columbia (UBC)
- ** National Science Foundation (NSF)

