# New insight into naturally occurring nanosilver: Role of plant root exudates

Huiyuan Guo

Ph.D. candidate

Advisor: Prof. Baoshan Xing





Environmental soil and chemistry program University of Massachusetts Amherst

### Background: sources of nanosilver (nAg)

Engineered nAg from consumer products





(Guo et al. 2015 Environ. Sci. Technol)

### Background: sources of nanosilver (nAg)

Naturally formed nAg



EPS: extracellular polymeric substances

#### Root exudates (RE)

- Ubiquitous in soil and aquatic environments;
- A cocktail of organic substances and inorganic ions;
- Unknown role in the formation and stability of naturally occurring metal nanoparticles.





#### **Research goals:**

- ☐ Investigate if RE own the ability to transform Ag<sup>+</sup> to nAg
- ☐ If yes, identify the key factors that control the reduction of silver ions by RE and figure out the underlying mechanisms

## Experimental design

Reduction of Ag<sup>+</sup> by root exudates (RE) from wheat plants

#### RE collection and characterization

- Greenhouse: 25 °C with 16h/8h (light/dark) cycle, light intensity ~32400 lux.
- RE were collected from ~1 week old of live wheat roots after 24 h incubation in water.
- TOC:  $134 \pm 2$  mg/L, pH  $6.7 \pm 0.1$ . GC-MS

#### Interaction of RE with Ag<sup>+</sup>

• The extracted RE interacted with Ag<sup>+</sup> (1 mM) in a chamber room with light intensity of 8288 lux.

## **Characterization and determination of the formed particles**

- UV-vis spectroscopy
- Surface-enhanced Raman spectroscopy (SERS)
- SEM-EDS
- XRD



after well mixing





- ☐ Root exudates can reduce Ag+ to nAg.
- ☐ The AgNP concentration increased in 8 h of irradiation and leveled off thereafter.

#### Surface-enhanced Raman spectroscopy (SERS) data



☐ SERS data confirmed the formation of nAg.

## Potential mechanisms

- Superoxide anion radical (O<sub>2</sub>•-)
- Electron shuttling within Ag<sup>+</sup>- organic complexes
- Enzymes or other proteins
- Reducing sugars

### 1. Superoxide anion radical (O<sub>2</sub>\*-)



#### 2. Electron shuttling within Ag<sup>+</sup>-organic complexes

0 5 20

[Na+]/mM:



- ☐ Competing cation didn't affect the initial reaction rate but rather resulted in the particle aggregation because of the high ionic strength.
- $\square$  The reduction of  $Ag^+$  is not attributed to the ligand-to-metal charge transfer.

#### 3. Enzymes or other proteins





☐ Enzymes or other proteins in root exudates didn't contribute to the transformation of Ag<sup>+</sup> to nAg.

## 4. Reducing sugars

| Reducing sugars     | Relative abundance | Reduction of Ag <sup>+</sup> |
|---------------------|--------------------|------------------------------|
| D-mannose           | 34.2%              | No                           |
| <b>D-fructose</b>   | 13.6%              | No                           |
| α-D-lactose         | 22.5%              | No                           |
| D-cellobiose        | 8.9%               | No                           |
| Mixture of 4 sugars | 79.2%              | No                           |

(Based on GC-MS data)

#### RE fractions based on molecular weight



□ The fraction of 0-3 kDa in root exudates plays a critical role in the reduction of silver ions, likely due to the presence of Cl ions in the 0-3 kDa.
 □ Without the >3 kDa fraction, the formed particles are less stable.



☐ EDS and XRD data demonstrate that both nAg(0) and nAgCl are present in the formed particles.



**XRD** 



>3kDa+Cl >3kDa <3kDa RE

4 h

8 h

8 h, 1 d in fridge



- ☐ Adding Cl ions into the fraction of >3 kDa leads to the formation of Ag-containing particles.
- ☐ Both >3 kDa and 0-3 kDa are responsible for the stabilization of the formed Ag-containing particles.

#### **Proposed Mechanism**



#### **Future work**

- 1. Influence of the Ag/Cl ratio in the system on the reduction pattern of  $Ag^+$ .
- 2. Characterize the structure difference using scanning electron microscopy at different ratios of Ag/Cl.
- 3. Quantify the fraction of AgCl and Ag(0) in the formed particles.

#### **Conclusions**

- 1. Root exudates possess the ability to reduce Ag<sup>+</sup>.
- 2. The reducing strength doesn't derive from superoxide radicals, Ag<sup>+</sup>-organic complexes, enzymes or other proteins, or reducing sugars.
- 3. Cl<sup>-</sup> in root exudates plays an important function in converting Ag<sup>+</sup> because of the electrons generated by AgCl upon light exposure.
- 4. Both fractions of 0-3 kDa and > 3 kDa are responsible for the stabilization of the formed nAgCl and nAg particles.

### Significance:

- ☐ A new pathway leading to natural formation of silver-containing nanoparticles.
- Impact of environmental cycling on the fate and toxicity of silver ions and silver-containing nanoparticles.



## Acknowledgements

#### **Advisor:**

Dr. Baoshan Xing

#### **Committee members:**

Dr. Jason C. White

Dr. Lili He

Dr. Wesley R. Autio

#### **Lab members:**

- Dr. Feng Han
- My Huynh
- Lauren Thistle

- USDA NIFA Hatch Program (MAS00475)
  USDA NIFA (2015-67017-23070)
- BARD (IS-4964-16R)

Thanks for your attention!

SI

## Background

**☐** Environmental contamination of silver ions:

260  $\mu$ g/L near photographic manufacturing waste discharges; 300  $\mu$ g/L in treated photoprocessing wastewaters; 31 mg/kg in certain soils; and 150 mg/kg in river sediments.

**□** Environmental toxicity of silver ions :

Lethal concentrations for sensitive aquatic plants, invertebrates, and teleosts: 1-5 µg/L. Adverse effects occur on development of trout at concentrations as low as 0.17 µg/L and on phytoplankton species composition and succession at 0.3-0.6 µg/L. --WHO: Silver and Silver Compounds: Environmental Aspects

**□** Reduction of silver ions :





- $\Box$  Ag<sup>+</sup> are more toxic than the same levels of AgNPs.
- ☐ The ability of plant root exudates to **transform more toxic Ag**<sup>+</sup> **to less toxic AgNPs** provides one possible pathway for plants **defending the stress caused by heavy metal ions**. Meanwhile, the alteration of silver species by plants may change their fate and toxicity of heavy metal ions in other living organisms.







| Size characterization |        |  |
|-----------------------|--------|--|
| Average diameter      | 103 nm |  |
| <100 nm               | 51%    |  |
| >100 nm               | 49%    |  |



☐ The ratio of Ag/Cl in the system can modify the reduction pattern of Ag<sup>+</sup>.

