Nanomaterial Fate and Exposure Research: Where we are now and where we need to be to model environmental exposures

Greg Lowry and Bernd Nowack Carnegie Mellon University Walter J. Blenko, Sr. Professor of Civil & Env. Eng. Deputy Director, (CEINT)

Empa-Swiss Federal Laboratories for Materials Science and Technology Technology & Society Laboratory Environmental Risk Assessment and Management Group

Sus-Nano 2015, March 9-11, Venice

Environmental Fate Modeling

NM Sources/Inputs

In the Beginning.....

Key Questions to Address?

- What models, systems, and model frameworks do we need?
- What are the key parameters and inputs needed in those models?
- How do we measure those parameters for nanomaterials in complex systems?
- How can we validate our models?

Some Key Models are Required

materials Science & recrinology

What Model Parameters Best Describe Fate?

Meade (ed.) USGS Circular 1133, 1995

Westerhoff and Nowack, 2013, Accounts in Chemical Research 46: 844-853.

Most Fate Work Can *Inform* Models, but cannot *Parameterize* the Models

Levard et al., ES&T 2011 45 (12), 5260. Ma et al., 2013 ES&T 47 (6), pp 2527–2534; Ma et al., 2014 ES Nano 1 347-357.

DI 1% SDS SR water

Hyung, et al. *Environ. Sci. Technol.* 2006 41(1) 179-184

Li et al., ES&T 44 (9) 3462-346

"Functional Assay" Approach to Parameterize Models

This becomes more important as nanomaterial complexity increases

Fig. 3 Schematic showing the ever-expanding space of nanomaterial conjugation and the resulting permutations of nanomaterials.

Saleh et al., 2015 ES Nano 2 11-18

Modeling environmental exposure

Material-flow modeling

- Sources: Production, use
- Fate in technical systems: wastewater, solid waste, recycling
- Provides flows to the environment
- Environmental fate modeling
 - Provides predicted environmental concentrations
 - First tier: Simple box models
 - Second tier: Mechanistic models

Information needs for release modeling

Production and use

ENM	(Schmid	(Hendren	(Piccinno	(Keller	(ANSES,	Sun et
	and	et al.,	et al.,	et al.,	2013)	al.,
	Riediker,	2011)	2012)	2013)		2014
	2008)					
TiO ₂	11'500	8'600-	550	20'000	92'000	10,000
		42'000				
Ag	82	3-20	6	100	0.006	30
ZnO	1,900	-	55	7,900	1,900	1,600
CNT	26	60-1,200	550	740	-	380
C ₆₀	-	2-90	0.6	-	< 100	20
CeO ₂	-	40-770	55	2,300	700	-
Al-ox	0.1	-	550	8,100	15,000	-
Fe-ox	9,700	-	550	9,700	6,100	-
SiO ₂	2,000	-	5500	22,000	990,000	-
Nanoclays	-	-	-	2,400	<100	-
Cu	-	-	-	46	< 100	-
Quantum	-	-	0.6	-	-	-
dots						

Sun et al., (2014) Environ. Pollut. 185: 69-76

Modeling flows to the environment

Material-flow model for nano-TiO₂ in the EU

Environmental concentrations

		EU		
	Mode	Q _{0.15}	Q _{0.85}	
		Ν	2	
STP Effluent	16	13	110	µg/L
Surface water	0.53	0.40	1.4	µg/L
Sediment	1.9	1.4	4.8	mg/kg∙y
STP sludge	170	150	540	mg/kg
Natural and urban soil	0.13	0.09	0.24	µg/kg∙y
Sludge treated soil	1200	940	3600	µg/kg∙y
Air	0.001	0.000	0.001	µg/m³
Solid waste	12	8.3	20	mg/kg
WIP bottom ash	120	82	230	mg/kg
WIP fly ash	150	110	310	mg/kg

Fate models for nanomaterials

Praetorius (2012) ES&T 46, 6705

Meesters (2014) ES&T 48, 5726

Conclusions

- Life-cycle based material flow models are well established
 - Able to provide flows to the environment and estimates of concentrations
 - More production and use data needed
 - Transformations during use and release needs to be included
 - Next level of complexity involves dynamic processes
- First versions of environmental fate models available
 - Rely on flow models for input
 - Average region vs. spatially-resolved
 - Heteroagglomeration as main unknown input
 - Experimental data on heteroagglomeration needed
 - Transformations only marginally covered

