
DISTRIBUTION AND BIOLOGICAL EFFECTS OF FULLERENE C₆₀, TITANIUM DIOXIDE, AND SILVER NANOPARTICLES AFTER SINGLE AND MULTIPLE INTRAGASTRICAL ADMINISTRATIONS TO RATS

Olga D. Hendrickson

A.N. Bach Institute of Biochemistry, Moscow, Russia

Contents

- ✓ Engineered nanomaterials (ENM) used in the study
- ✓ Analytical methods for determination of NPs localization
- ✓ Design of in vivo acute and sub-chronic toxicological experiments
- ✓ Biodistribution of nanoparticles in organs and tissues
- ✓ Biological effects of ENMs:
 - animal lethality, state of the treated animals, general appearance, activity, behavior;
 - body weight, food and water intake;
 - dynamics of biochemical parameters and hematological indices;
 - pathomorphological analysis of the internal organs.

✓ Conclusions

Cooperation with EU in nanosafety studies

«Toxicokinetics and organ toxicity and dose-response models using selected ENMs»

«Development of models for prediction of potential risks through SAR and QSAR, PBPK-PB and Monte Carlo»

A.N. Bach Institute of Biochemistry, Moscow, Russia

Project of the 7th Framework Program of EU «Managing Risks of Nanomaterials» («MARINA»), 2011-2015

Engineered nanomaterials used in the study

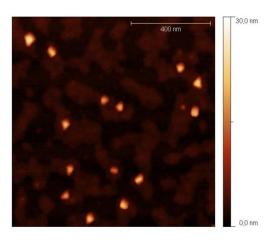
OECD WPMN priority list of 13 ENMs as a representative set of reference compounds

- Single-walled & multi-walled carbon nanotubes
- **➢** Gold NPs
- > Iron NPs
- > Aluminium oxide

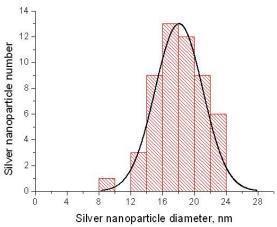
- Fullerenes (C₆₀)
- > Silver NPs
- > Titanium dioxide

- > Cerium oxide
- > Zinc oxide
- > Silicon dioxide
- Dendrimers
- Nanoclays

Selected due to:

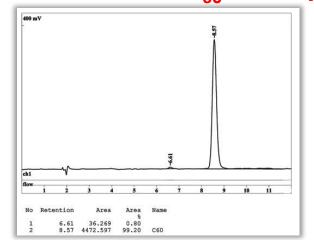

- large-scale production
- wide commercial use
- expected or demonstrated in vivo or in vitro biological effects

ENM characterization


Silver NPs: by Atomic Force Microscopy

AFM images at scanning square 3 x 3 nm or 1 x 1 nm

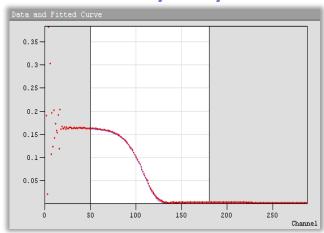
1 μm



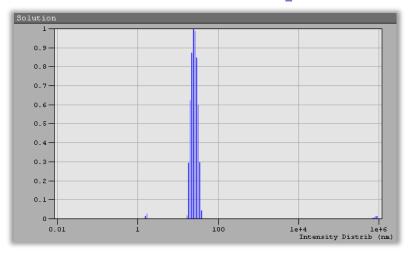
Size distribution of silver NPs: Average diameter = 18.1± 3.0 nm

Silver NPs (20 nm) of 99.9 % purity from Nanocs, cat. no. SNP20-20.

Fullerene C₆₀ NPs: by High Performance Liquid Chromatography


Fullerene C₆₀ of 99.95 % purity from SES Research, cat. no. 600-9980

Main fraction $(C_{60}) - 99.2\%$


ENM characterization

Titanium dioxide NPs: by Dynamic Light Scattering and Transmission Electron Microscopy

Autocorrelation function for DLS measurements of hydrodynamic radius

Size distribution of TiO₂ NPs

TEM images and diffraction pattern of TiO₂ NPs

Titanium dioxide NPs (anatase, <25 nm) of 99.7% purity from Sigma-Aldrich, cat. no. 637254.

Average diameter by DLS = 55.5 ± 4.7 nm

Analytical methods used in the study of ENM localization

Atomic absorption spectroscopy (AAS)

TIO₂ NPs

Atomic absorption spectrometer AAnalyst 800, «Perkin Elmer», USA

High performance liquid chromatography

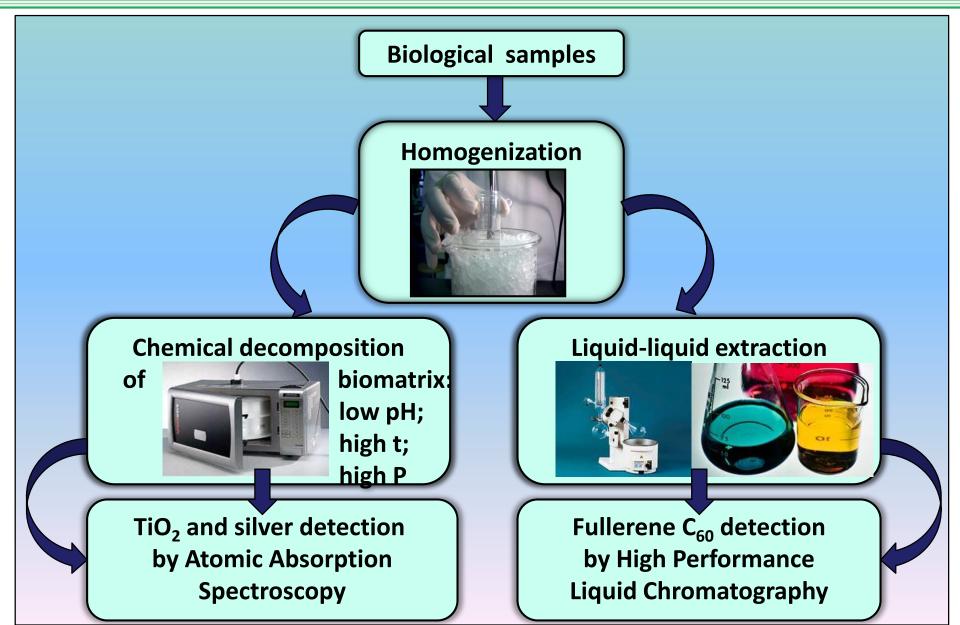
Chromatograph STAYER, «Aquilon», Russia

Design of the in vivo experiment

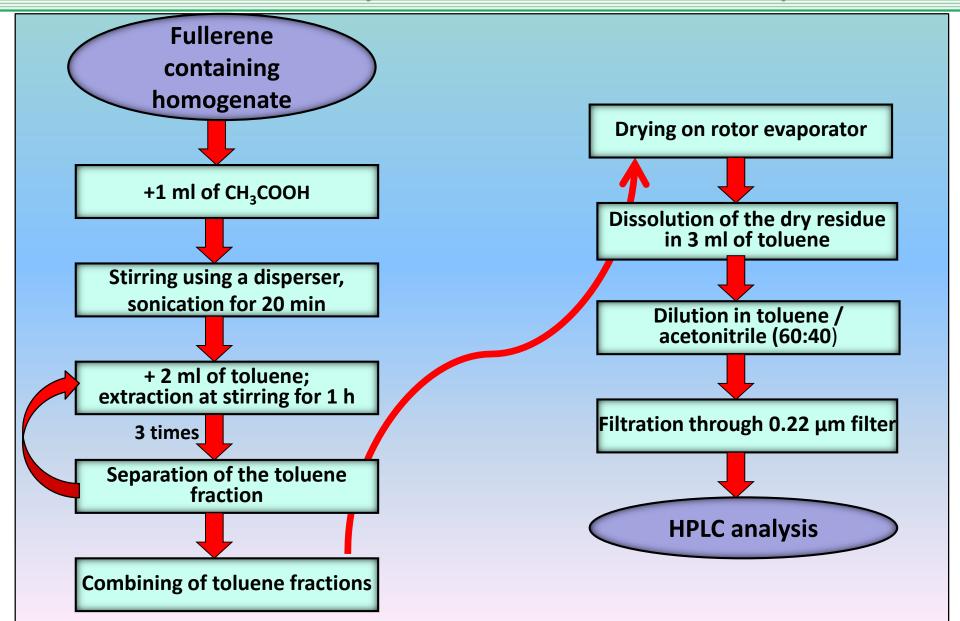
Parameters studied

Lethality; State of animals; **Body weight;** Food and water intake; **General appearance**; Activity; Behavior; External manifestations of toxicity

ENM content in organs and tissues

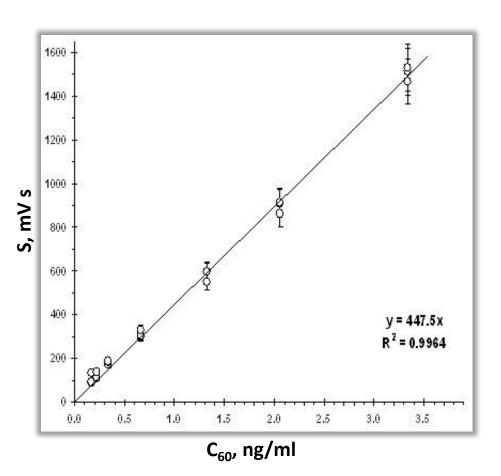

biochemical and hematological parameters

ENM content in organs and tissues


biochemical and hematological parameters

	Determination of maximum tolerated dose (adult outbred mice)						
Male rats were daily intragastrically	Group	Amount of mice, males/ females	Dose, mg/kg b.w.	Times of administra- tion	Recovery period	Day of euthanasia	Parameters s
administered with	1	6/6	control				Lethalit
TiO ₂ NPs	2	6/6	1000			15	State of an
or	3	6/6	2000		14		Body wei Food and wate
Silver NPs	4	6/6	3000	1			General appe
or	5	6/6	4000				Activity; Be
Fullerene C ₆₀ via gavage at dose	6	6/6	5000				External manife toxicit
of 2000 mg/kg of	Single administration (adult Sprague-Dawley rats)						
body weight during	1	18/0	control			1 st	ENM content in
the period of 1 day	2	6/0	2000	1	14	7 th	tissues +
(acute toxicity	3	6/0	2000			14 th	
experiment) and	4	6/0	2000			of the recovery period	
250 mg/kg b.w.	Multiple administrations (adult Sprague-Dawley rats)						
during 30 days	1	18/0	control			_	ENM content in
(sub-chronic toxicity	2	6/0	250	30	no	7 st	tissues
experiment)	3	6/0	250			18 th	+ biochemica
	4	6/0	250			30 th	hematological p

Scheme of biomaterial treatment before AAS and HPLC detection of TiO_2 , Ag and C_{60} nanoparticles



Procedure of C₆₀ extraction from biological material: to increase fullerene recovery & reduce the duration of biosample treatment

Percentage of NPs recovery in biomaterial prior to detection in real samples

C₆₀ calibration curve by HPLC

Percentage of recovery by comparing the amount of NPs "pre-added" to homogenates and revealed by HPLC

Organ or tissue	Detected fullerene C ₆₀ , %		
Lung	88.5±3.8		
Liver	78.4±4.6		
Kidneys	83.5±5.1		
Spleen	84.5±4.3		
Adrenal glands	87.1±4.4		
Brain	85.7±4.4		
Testicle	88.7±4.6		
Stomach	91.4±5.2		
Small intestine	91.3±5.5		
Heart	89.3±3.4		
Thymus	91.3±2.1		
Skin	92.1±2.3		
Adipose tissue	93.6±4.5		
Muscle tissue	89.9±4.7		
Blood serum	91.2±4.2		

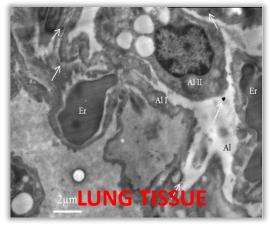
Biodistribution of silver nanoparticles in organs and tissues detected by AAS after single administration (dose – 2000 mg/kg b.w.) and multiple administrations (dose – 250 mg/kg b.w.)

	CONTENT OF SILVER NANOPARTICLES (µg/g of organ or tissue)						
	SIN	GLE EXPOS	URE	MULTIPLE EXPOSURES			
ORGAN OR TISSUE			DAY OF	F SAMPLING			
	1 st	7 th	14 th	7 th	18 th	30 th	
Lungs	n/f*	n/f	n/f	n/f	n/f	n/f	
Liver	n/f	0.86±0.08	n/f	n/f	0.11±0.01	0.12±0.01	
Kidneys	n/f	0.63±0.07	n/f	0.24±0.01	0.24±0.01	0.23±0.01	
Spleen	n/f	0.07±0.01	n/f	n/f	0.18±0.01	0.18±0.01	
Adrenal glands	n/f	n/f	n/f	n/f	n/f	n/f	
Brain	n/f	n/f	n/f	n/f	n/f	n/f	
Testicles	n/f	n/f	n/f	n/f	n/f	n/f	
Stomach	0.11±0.01	n/f	n/f	0.02 ±0.001	0.02±0.001	0.02±0.001	
Small intestine	0.22±0.01	0.14±0.01	n/f	0.02 ±0.001	0.02 ±0.001	0.02 ±0.001	
Heart	n/f	n/f	n/f	n/f	n/f	n/f	
Thymus	n/f	n/f	n/f	n/f	n/f	n/f	
Skin	n/f	n/f	n/f	n/f	n/f	n/f	
Adipose tissue	n/f	n/f	n/f	n/f	n/f	n/f	
Muscle tissue	n/f	n/f	n/f	n/f	n/f	n/f	

^{*}n/f-not found

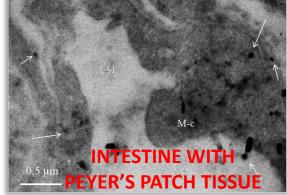
Biodistribution of fullerene C₆₀ and titanium dioxide nanoparticles in organs and tissues after acute and sub-chronic toxicity experiment

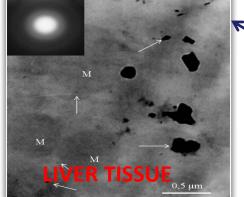
DAY OF THE	SINGLE ADMINISTRATION (2000 mkg/kg b.w.)				
RECOVERY PERIOD AFTER ADMINISTRATION	FULLERENE C ₆₀ NANOPARTICLES	TiO ₂ NANOPARTICLES			
1 st	LUNGS; STOMACH; SMALL INTESTINE	SPLEEN; SMALL INTESTINE			
7 th	LIVER; KIDNEYS; SPLEEN	LIVER; KIDNEYS; SPLEEN; STOMACH; SMALL INTESTINE			
14 th	NO (total excretion)	NO (total excretion)			
DAY OF ADMINISTRATION	MULTIPLE ADMINISTRATIONS (250 mkg/kg b.w.)				
7 th	LIVER; KIDNEYS; SPLEEN; SMALL INTESTINE	LIVER; KIDNEYS; SPLEEN; SMALL INTESTINE			
18 th	LIVER; KIDNEYS; SPLEEN; SMALL INTESTINE	LIVER; KIDNEYS; SPLEEN; SMALL INTESTINE			
30 th	LIVER; KIDNEYS; SPLEEN; SMALL INTESTINE	LIVER; KIDNEYS; SPLEEN; SMALL INTESTINE			


The majority of NPs (>99%) were not absorbed in gastrointestinal tract and excreted from rats!

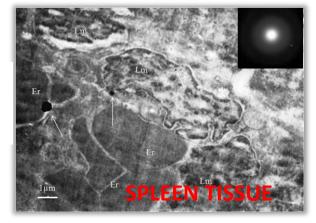
TEM observation of ultrathin sections of organs and tissues after exposure to TiO₂

After single administration NPs were examined:


in mucosal epithelium of small intestine; in liver parenchymal tissue; in red and white pulp of spleen;



- in alveolocytes;in alveolar cavities; -in blood capillaries; -in erythrocytes; - in alveolar macrophages


- RAIN TISSUE
 - -In myelinated axons;
 - in nerve fibers;
 - -in blood capillaries;
 - -in erythrocytes;
 - in lymphocytes

- -in enterocyte microvilli;
 - in blood vessel;
 - -in erythrocytes;
- -in underlying mucosal tissue

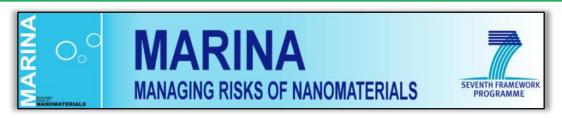
- in hepatocytes;
- -In blood vessel;
- -- in erythrocytes
- in blood elements;
 - -In blood vessel;
 - in hyaloplazm

Aggregates of ≥100 nm

Observation of ultrathin sections by TEM: morphological changes in cells

- ✓ NPs localized in intracellular environment: in nuclei, on endoplasmic reticulum membranes, in mitochondria, lysosomes, in cytoplasm, etc.;
- ✓ NPs caused morphological changes in all structures (except those of brain and lung tissues);
- ✓ Cell structures responsible for the energy metabolism and the protein-synthesis function were the most vulnerable and susceptible to negative effects

Summary of ENMs biological action


After single and repeated-dose toxicity experiment:

- no animal mortality, toxicity signs, substantial behavior or motor deviations was recorded throughout the observation periods;
- the body weights, food and water consumption, absolute weights of internal organs did not vary for the treated and control animals;
- no statistically significant differences in biochemical parameters and hematological indices were found for control and treated rats;
- necropsy of internal organs revealed no visible pathomorphological changes.

Overall conclusions

- ❖ singly or multiply administered silver, TiO₂ and C₆₀ NPs absorbed from gastrointestinal tract with infiltration into the bloodstream and translocation into secondary organs (liver, spleen, kidneys, etc.) with *no pronounced toxic effects on the macroorganism level*;
- the amounts of NPs accumulated in tissues were comparable for acute and sub-chronic experiments;
- the amounts of NPs detected in organs and tissues were far smaller than the administered doses that was the indication of their efficient excretion;
- ❖ NPs localized in many intracellular structures and were responsible for some morphological changes in them.

Acknowledgements

Olga V. Morozova*, Svetlana M. Pridvorova*, Tatyana A. Platonova*,
Anatoly V. Zherdev*, Alexander I. Yaropolov*, Boris B. Dzantiev*
Sergey G. Klochkov**, Sergey O. Bachurin**
*Institute of Biochemistry, Russian Academy of Sciences
**Institute of Physiologically Active Compounds, Russian Academy of Sciences

THANKS FOR YOUR ATTENTION!