

Department of Environmental Geosciences

Single particle ICPMS based methods for tracking environmental leaching of nanoparticles from consumer products

Jana Navratilova, Frank von der Kammer Andreas Gondikas, Thilo Hofmann

Introduction

- Need to screen for nanomaterials that raise environmental and toxicological concerns
- Nanomaterials produced in high volumes: TiO₂, ZnO, CuO, CeO₂, SiO₂, NiO₂, Al₂O₃, Fe₂O₃
- <u>Nanoproduct lifecycle</u>

Release testing of ENM

- High demands on the analytical methods
- Not all fit for release testing (DLS, NTA, TEM)
- Challenges for analysis at relevant exposure and release concentration levels (ng/L)

Single particle ICPMS:

- Quantification tool for release (ng/L)
 Element specific particle counter (p#/L)
- spICPMS analysis difficult for metal oxide nanoparticles
- Several naturally abundant isotopes, interfered masses

Limitations of spICPMS

Size detection limit:

Instrumental background Presence of the dissolved ions

 Particle number detection limit: Deviations in nebulisations efficiency Counting statistics (false positive spikes)

spICPMS method optimisation for Fe, Cu and Ti based nanoparticles

application of these methods to investigate release from consumer products into environment

CHALLENGE 1: Iron oxides nanoparticles

a, β , γ , ϵ - Fe₂O₃, Fe₃O₄, FeO

Industrial, environmental, medicine application

Isotope	Abundance (%)
⁵⁴ Fe	5.845
⁵⁶ Fe	91.754
⁵⁷ Fe	2.119
⁵⁸ Fe	0.282

⁵⁶Fe: Highest instrumental sensitivity

1st IP: 7.90eV Easily ionised in argon plasma

Plasma based interference: ⁵⁶Fe (⁴⁰Ar¹⁶O⁺), ⁵⁷Fe (⁴⁰Ar¹⁶OH⁺) Matrix based interference: ⁵⁶Fe (⁴⁰Ca¹⁶O⁺), ⁵⁷Fe (⁴⁰Ca¹⁶OH⁺) Isobaric interference: ⁵⁴Fe (Cr), ⁵⁸Fe (Ni)

CHALLENGE 2: Copper oxides nanoparticles

Antifouling paints for boats

Contamination of aquatic ecosystem

Isotope	Abundance (%)
⁶³ Cu	69.17
⁶⁵ Cu	30.83

Matrix based interference ⁴⁰Ar²³Na (m/z=62.95)

CHALLENGE 3: Titanium dioxides nanoparticles

Accounts for 70% of the total production volume of pigments worldwide

Used in common household items

DANGER

NANOPARTICLES

[11] < 1	рро
⁴⁶ Ti	8.0%
⁴⁷ Ti	7.3%
⁴⁸ Ti	73.8%
⁴⁹ Ti	5.5%
⁵⁰ Ti	5.4%

[m·] 4]

[Ca] ≈ 40,000 ppb

⁴⁰ Ca	96.941%
⁴² Ca	0.647%
⁴³ Ca	0.135%
⁴⁴ Ca	2.086%
⁴⁶ Ca	0.004%
⁴⁸ Ca	0.187%

Several polyatomic interferences: ³²S¹⁶O⁺

Pure isobaric interference

Problem in natural water samples

Agilent 8800 ICP MS/MS

NH₃ as a reaction gas and clustering ligand: [Fe(NH₃)_x]⁺ x = 1 - 4

Scan for the reaction products **Q1** prefilter, set to m/z 56 (precursor ion) **Q2** scan for product ion which is interference free

Reaction profile of the clustering reaction

Removal of the interferences using He and H₂

H₂ and He gas flow optimisation

- He: collision gas, reduces instrumental sensitivity
- H_2 : effective to eliminate argon interferences ArO⁺+ $H_2 \rightarrow$ ArOH⁺

Influence of He and H₂ on intensity of ⁵⁶Fe (10ppb ionic Fe std.)

									A	10		
Gas	Dete limit	ction (µg/L)	de lin	Size tectior nit (nm	n)	Sensi (cps/µ	tivity ıgL ⁻¹)	A (C)	ccuracy RM NIST))		
60% NH ₂	0.	62	1	14nm		10 8	84		102%			
H ₂	0.05	-0.08	47	7-54nm	1	88 3	819		99%			
не	Ο.	79	ł	ssum		8 1	17		89%			
0	1	2	3	4	5	6	7	8	9		C	
			Gas	5 TIOW I	rate	(mi/m	11N)					

spICPMS of in house synthesised hematite nanoparticles

DLS: 66 ±1nm

spICPMS on CuO dispersion

Method optimised on the ionic Cu standard Estimated SDL 15nm (ESD)

Applied on the dispersion of commercial CuO nanopowder in DIW Problem with sample sedimentation

DLS: 203nm (PDI=0.4)

Experimental conditions									
Instrument	Agilent 8800		.06						
Nebulizer	Micromist		4			_			
Isotope monitored	⁶³ Cu	insity	0.0						
Integration time	5 ms	De	0.02		/				
Sample flow rate	390 µl min ⁻¹		00.						
Acquisition time	60 sec		0	0	20	40	60	80	100
Cell gas/ flow rate	He/5 ml min ⁻¹					ESD	(mm)		

spICPMS analysis of TiO₂ in surface water

Sampling Date

Seasonal increase of TiO₂ particles in Old Danube Lake (Vienna, Austria)

Conclusions and outlook

- spICPMS methods optimised for Fe, Cu, Ti based nanoparticles
- SDL for their oxide form: 40, 15, 50nm (ESD)

- Application of the methods on the release studies
- Robustness of the methods in real environmental media (different water chemistry)

Acknowledgements

Frank

Sustainable Nanotechnologies Project

Andreas

Stephan

This project is funded by the EU 7th Framework Programme, contract no. 604305

http://www.sun-fp7.eu/

