

International Consortium for the Environmental Implications of Nano Technology

Groundwater pollution treatment with micro and macro ZVI compared with nano ZVI

•\$ LCE FRE 3416 CNRS-AMU; Marseille

Fe° Permeable Reactive Barrier Technology

Within the last 20 years the iron wall technology has developed to a standard technology for groundwater remediation and wastewater treatment with worldwide acceptance. Fe[°] PRB is regarded as a reductive technology for organic contaminants, for inorganic contaminants, reductive precipitation (Gu et al., 1998, Puls et al., 1999), co-precipitation (Lackovic et al., 2000, Paspaliaris, 2006, Noubactep et al., 2006) and adsorption onto iron oxides and oxy-hydroxides are considered as major reaction paths(Henderson and Demond, 2007, Johnson et al., 2008, Silvia Comba, 2011).

PRB systems are using wide range from 20 to 100 vol% of Fe⁰ depending upon contaminants and level of treatment required

The reactivity of Fe°

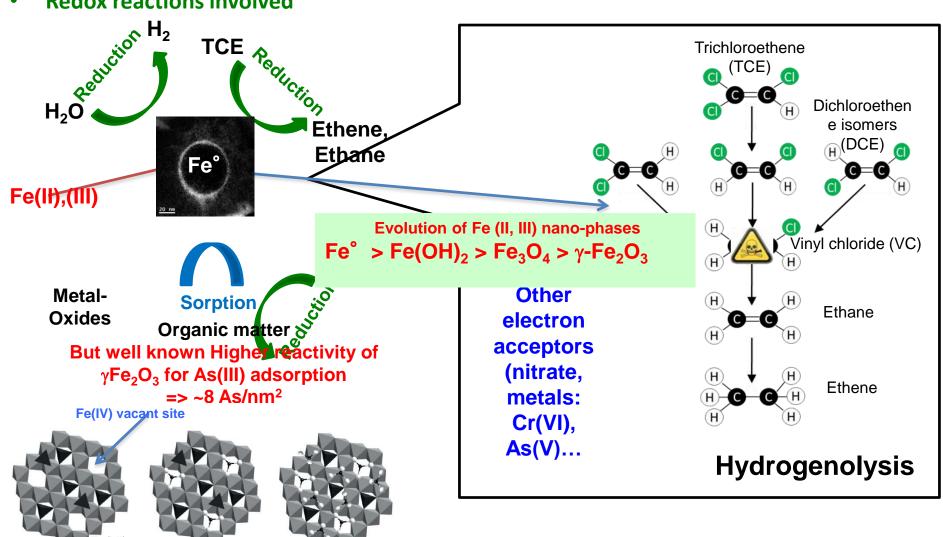
The Evolution of Fe phases $Fe^{\circ} > Fe(OH)_2 > Fe_3O_4 > \gamma - Fe_2O_3 \text{ or } \gamma - FeOOH \text{ and also due to the strong}$ increase of sulfate and nitrate reducing bacteria: mackinawite ((Fe,Ni)1 + xS (where x = 0 to 0.11)) or amorphous FeS which increase the oxidation rate of Fe[°] and play a role in the sorption/incorporation of metals

Current limitations:

(i) the longevity of the wall in terms of Fe⁰ reactivity loss, resulting from the build-up of mineral precipitates at the Fe⁰ surface is not fully understood
(ii) Evolution of microbial population in PRBs and Reactive Zones, and their interaction with contaminants and Fe⁰ particles
(iii) Oxidation and transport of iron nanoparticle in porous media.

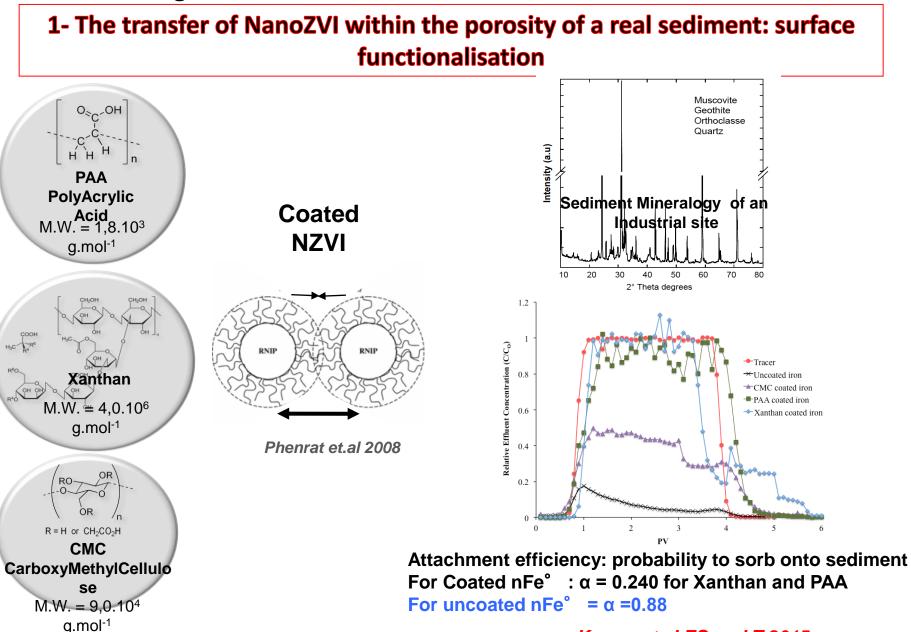
N Kumar PhD Thesis 2014

Nano ZVI for underground water treatment

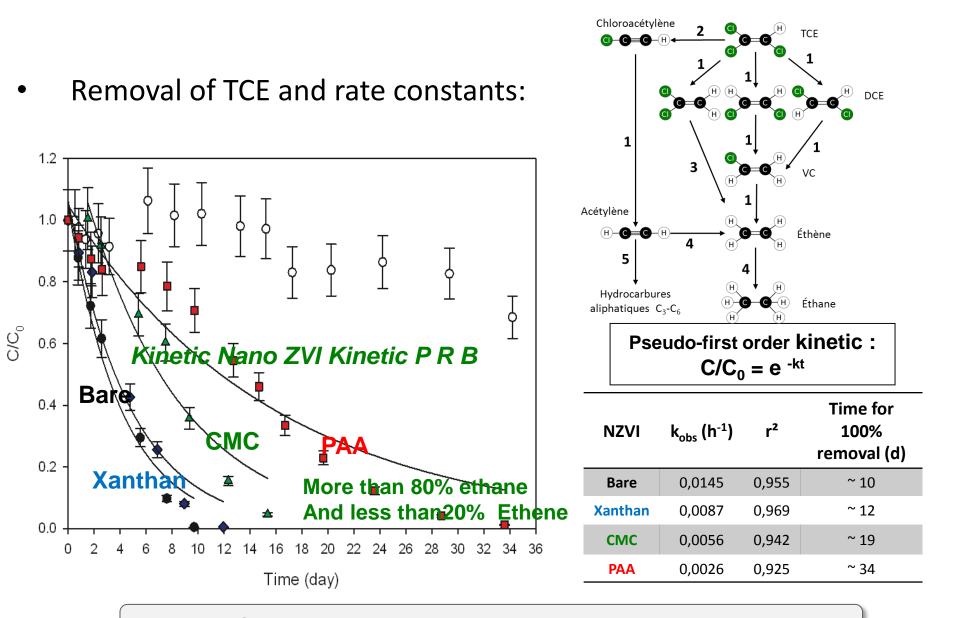

Same activity as micro and granular Fe[°] = reduction, adsorption...

Redox reactions involved •

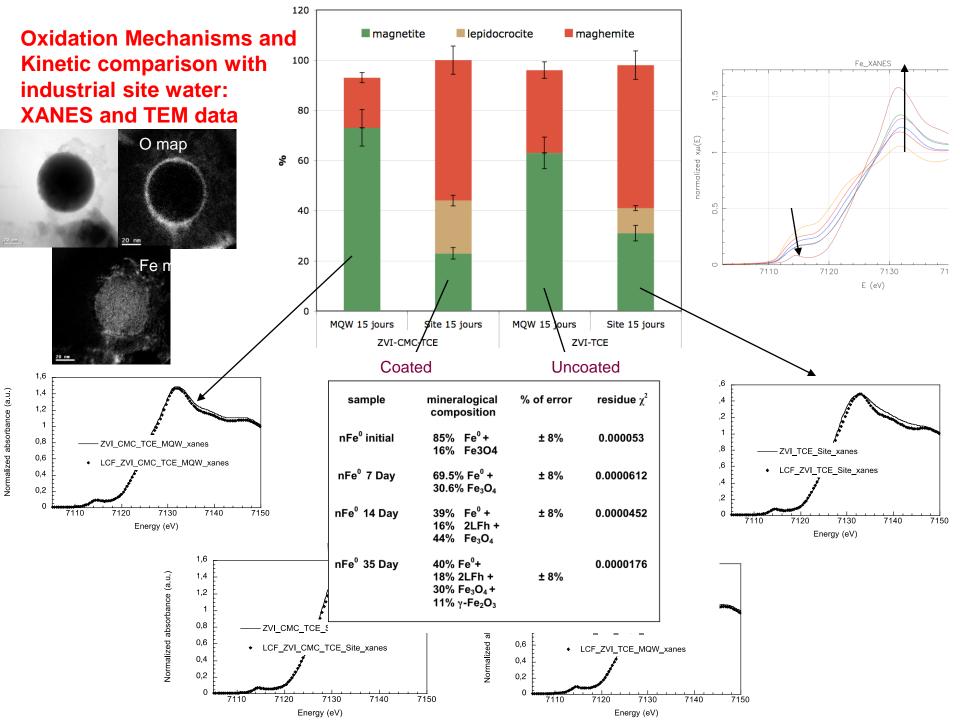
Fe(VI)


Fe(IV)

As 🦂


Auffan et al, Langmuir 2008

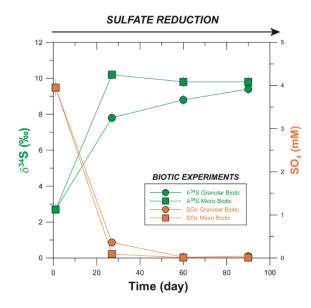
Nano ZVI: Efficiency depends on: 1-porous media complexity, 2-Coating



Kumar et al ES and T 2015

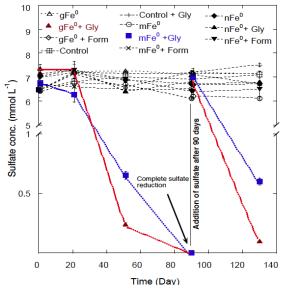
2-Effect of coating

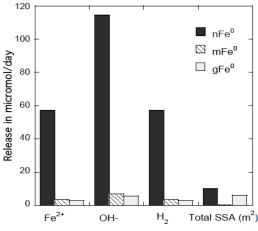
Complete removal between 10 and 34 days


Differences in terms of bio-activity vs size of Fe[°] evaluated using materials from polluted industrial site (microcosm and column experiments)

S.No		Conce	ntration
1	pH	4.1	
2	ORP	326	mV
3	EC	987	μS cm ⁻¹
4	Dissolved oxygen	0.13	mg L ⁻¹
5	Dissolved Sulfate	420.00	mg L ⁻¹
6	Zinc	49.00	mg L ⁻¹
7	Cadmium	0.41	mg L ⁻¹
8	Fe	7.48	mg L ⁻¹
9	As (Total)	0.04	mg L ⁻¹
10	Chloride	21.00	mg L ⁻¹
11	Nitrate (as Nitrogen)	1.00	mg L ⁻¹
12	Total hardness	2.40	mmol. L ⁻¹
13	Total Organic carbon	2.70	mg L ⁻¹
Table: 3.1: Groundwater characteristics			

Table: 3.1: Groundwater characteristics


S.No		Concentration	
1	pН	4.18	
2	Total Organic carbon	0.02	
3	Total S (mgS/Kg)	219.00 (mg Kg ⁻¹)	
4	Mn	16.00 (mg Kg ⁻¹)	
5	Fe (mg/Kg)	650.0 (mg Kg ⁻¹)	
6	Cd (mg/Kg)	0.60 (mg Kg ⁻¹)	
7	Zn (mg/Kg)	41.00 (mg Kg ⁻¹)	
8	As (mg/kg)	75.00 (mg Kg ⁻¹)	


Table: 3.2: Sediment Characteristics

Comparison of dissolved SO₄ and d³⁴S(%) vs time for biotic columns showing the activity of SRB (Sulfate Reduction Bacteria)

Nano ZVI do not decrease Chapter 5: Stimulation and inhibition of SRBs by Fe²: a batch study SO4 concentration

Release of Fe^{2+} , OH^- and H_2 vs size of Fe° (n= nano, m= micro, g= granular) in glycerol amended microcosm

Kumar N Water Res 2014 and Chemosphere 2013

Conclusion

In the presence of nFe^0 , no sulfate reduction was observed, although the results obtained with gFe^0 and mFe^0 microcosms confirmed the presence of SRB species in the aquifer sediment, and the pH and ORP conditions were favorable. A possible explanation for this observation could be the bactericidal properties of nFe^0 which have been previously linked to the (a) reduced state of particle, (b) cell membrane disruption, (c) Fe^{II} induced generation of reactive oxygen species, or (d) a combination of all of these (Lee et al., 2008, Auffan et al., 2008).

Nano ZVI is useful for treating the underground polluted waters due to -Large production of H_2 electron donor -Possibility to coat differently from site to site to transfer

-The adsorption of reduced As is larger with nano ZVI than m or g Fe° because reactivity of As(III) for nano Fe oxides is >>> than for Fe..S

We thank also

CEREGE (UMR 7330 CNRS-AMU) + LCE (FRE 3416 CNRS-AMU)

- D Kaifas (PhD AMU 2013)
- J Labille (CR CNRS)
- P Doumenq (Pr AMU)
- R Millot BRGM Orléans (France)

Any Questions?

