Surface affinity: a functional assay for quantifying nanoparticle behavior in complex systems

MARK R. WIESNER

Director Center for the Environmental Implications of NanoTechnology

Duke University

ACKNOWLEDGEMENTS

MATHIEU THEREZIEN Mélanie LAUREN Auffan

NIALL (BARTON) FITZGERALD O'BRIAN

Paul Bertsch Mike Hochella **Rich Di Giulio Cole Matson Emily Bernhardt Ben Colman** Joel Meyer Peter Vikesland **Clement Levard** Gordon Brown Paul Westerhoff Olga Tsyusko

Raju Badireddy Shihong Lin Yao Xiao **Fabienne Schwab** Lauren Barton Mathieu Terezien Jeff Farner David Jassby Benjamin Espinasse Charles De Lannoy **Alexis Carpenter** Amalia Turner

Jean-Yves	Greg
Bottero	Lowry

Key messages

- 1. HETEROÄGGREGATION AND DEPOSITION ARE A KEY FATE PROCESS
- 2. Surface Affinity is a useful, easily measured, characterization parameter for predicting fate and reactivity and perhaps biological interactions

FUNCTIONAL ASSAY FOCUS - FATE & TRANSPORT EXAMPLE

Key functional Assays:

- Surface affinity
- Dissolution rate
- Transformation rates
- Bioüptake/ depuration

WHAT PARAMETERS ARE NEEDED TO PREDICT TRANSPORT AND FATE OF NANOPARTICLES/

Solutes	NANOMATERIALS
DISTRIBUTION COEFFICIENT	DISTRIBUTION COEFFICIENT
Kow	SURFACE AFFINITY
	Hydrophobicity, surface charge
SOLUBILITY	DISSOLUTION RATE
Henry's constant	N/A
VAPOR PRESSURE	??
BIOACCUMULATION FACTOR	BIOACCUMULATION FACTOR
BIODEGRADATION RATE	BIO-DISASSEMBLY RATE
REACTION RATES	TRANSFORMATION RATES

"REAL WORLD" TRANSFORMATIONS

Freshwater Wetland

AFFINITY OF NANOPARTICLES FOR VARIOUS SURFACES

+/- breakup --settling -- dissolution...

Aggregation: Dissolution Reactivity Photo-catalysis Molecular Adsorption transport (settling) Deposition: Environmental dispersal Biouptake Translocation in organisms

Hotze et al., *Langmuir* 2010, 26(13), 11170–11175 Jassby et al., *Environ. Sci. Technol.* 2012, 46, 6934–6941

TRANSPORT: PARTICLE COLLISION MECHANISMS

AGGREGATION AND DEPOSITION BOTH DEPEND ON SURFACE AFFINITY

αβ

Aggregation rate proportional to

Deposition rate proportional to $\alpha\eta$

Settling rate dependent on (hetero)aggregation rate

$$\frac{dn_{k}}{dt} = \frac{1}{2} \sum_{i+j \to k} \alpha_{ij} \beta_{ij} n_{i} n_{j} - n_{k} \sum_{i=1}^{\infty} \alpha_{ik} \beta_{ik} n_{i}$$

$$\frac{dn_{r_{2k}}}{dt} = \frac{1}{2} \sum_{i+j=k} \begin{pmatrix} \alpha(f_{i},f_{j})\beta(r_{i},r_{j},f_{i},f_{j})n_{T_{2i}}n_{T_{2j}} \\ +\alpha(f_{i},0)\beta(r_{i},r_{j},f_{i},0)n_{T_{2i}}n_{T_{3j}} + \alpha(0,f_{j})\beta(r_{i},r_{j},0,f_{j})n_{T_{3i}}n_{T_{2j}} \\ +\alpha(f_{i},1)\beta(r_{i},r_{j},f_{i},1)n_{T_{2i}}n_{T_{4j}} + \alpha(1,f_{j})\beta(r_{i},r_{j},1,f_{j})n_{T_{4i}}n_{T_{2j}} \\ +\alpha(0,1)\beta(r_{i},r_{j},0,1)n_{T_{3i}}n_{T_{4j}} + \alpha(1,0)\beta(r_{i},r_{j},1,0)n_{T_{4i}}n_{T_{3j}} \end{pmatrix}$$

$$Mixed a$$

$$-n_{T_{2k}}\sum_{i} \alpha(f_{k},f_{i})\beta(r_{k},r_{i},f_{k},f_{i})n_{T_{2i}} + \alpha(f_{k},0)\beta(r_{k},r_{i},f_{k},0)n_{T_{3i}}} \\ +\alpha(f_{k},1)\beta(r_{k},r_{i},f_{k},1)n_{T_{4i}} - n_{T_{2k}}\frac{U(r_{k},f_{k})}{h}}{(18)}$$

Mixed aggregates

$$\frac{dn_{T3k}}{dt} = \frac{1}{2} \sum_{i+j=k} \alpha_{BB} \beta(r_i, r_j, 0, 0) n_{T3i} n_{T3j}
- n_{T3k} \sum_i \alpha(0, f_i) \beta(r_k, r_i, 0, f_i) n_{T2i} + \alpha_{BB} \beta(r_k, r_i, 0, 0) n_{T3i}$$
(19)
+ $\alpha_{NB} \beta(r_k, r_i, 0, 1) n_{T4i} - n_{T3k} \frac{U(r_k, 0)}{h}$

$$\frac{dn_{T4k}}{dt} = \frac{1}{2} \sum_{i+j=k} \alpha_{NN} \beta(r_i, r_j, 1, 1) n_{T4i} n_{T4j}
- n_{T4k} \sum_i \alpha(1, f_i) \beta(r_k, r_i, 1, f_i) n_{T2i} + \alpha_{NB} \beta(r_k, r_i, 1, 0) n_{T3i} \quad (20)
+ \alpha_{NN} \beta(r_k, r_i, 1, 1) n_{T4i} - n_{T4k} \frac{U(r_k, 1)}{h}.$$

20

Homoäggregates of nanoparticles

SIMULATIONS OF HETEROÄGGREGATION

SURFACE AFFINITY INCLUDES EFFECTS FROM:

- NANOPARTICLE COMPOSITION, COMPOSITION OF SURFACE, INTERVENING FLUID
- Adsorbed macromolecules
 - Proteins
 - Engineered surface treatments/ stabilizers
 - Humic materials, polysaccharides...
- IONIC COMPOSITION
 - Ionic strength, charge screening
 - Specific adsorption of ions (e.g., Ca, PO4...)
 - pH
- SURFACE MODIFICATIONS DUE TO REDOX TRANSFORMATIONS, DISSOLUTION...
- Electro-steric interactions (interface between macromolecules and ionic environment)
- Surface reactions/ electron sharing / protein binding

CHALLENGES IN CALCULATING SURFACE AFFINITY FROM THEORY (AND INTRINSIC NANOPARTICLE PROPERTIES)

1. DLVO- ROLE OF IONIC STRENGTH, IONIC COMPOSITION...

2. Role of macromolecules, electro-steric stabilization, and hydrophobicity

3. Complex geometry of Aggregates and surfaces qualitatively useful but, not quantitatively predictive in real systems

MEASURING SURFACE AFFINITY (ALPHA)

MEASURING SURFACE AFFINITY IN COMPLEX SYSTEMS

$$\frac{dn_k}{dt} = \frac{1}{2} \alpha \sum_{i+j \to k} \beta(i,j) n_i n_j - \alpha n_k \sum_i \beta(i,k) n_i - breakup$$

$$\frac{dn}{dt} = -\alpha\beta(n,B)nB + k_B(n_0 - n)$$

$$\ln(\gamma B + 1) = \alpha\beta(n, B)Bt$$

PREDICTED TREND FOR HETEROÄGGREGATION

TIME DEPENDENT DISTRIBUTION COEFFICIENT VS. AGGREGATION TIME

Duke

Barton et al., ENVIRONMENTAL ENGINEERING SCIENCE Volume 31, Number 7, 2014

TYPICAL TRENDS FOR α (COLUMN EXPERIMENTS) REPORTED IN THE LITERATURE

M. Elimelech Wat. Res. Vol. 26, No. 1, pp. 1-8, 1992

Environ. Sci. Technol., 2008, 42 (20), pp 7628-7633

SURFACE AFFINITIES FOR SEVERAL NANOMATERIALS AND ACTIVATED SLUDGE

IMPORTANCE OF SURFACE AFFINITY FOR TRANSFORMTION: CEO2

Badireddy et al., Environ. Sci. Technol. VOL. 43, NO. 17, 2009

Ag NP Embryotoxicity across a Salinity Gradient – The Role of Coatings and Dissolved Silver

Auffan et al., Nanotoxicology, 2013, Bone et al, ES&T 2012

•Toxicity curve shape related to silver speciation (total dissolved Ag, not Ag⁺)

CENT

Salinity (‰)

EXAMPLES OF NANOPARTICLE REACTIVITY

Еғғест	UNDERLYING REACTION
Toxicity to plants and fish by nano Ag	Nano silver dissolution
Viral inactivation by fullerol	Singlet oxygen generation
Bacterial inactivation by CeO2	Ce reduction

IMPORTANCE OF SURFACE AFFINITY FOR TRANSFORMTION: CEO2

- 1. HETEROÄGGREGATION/ DEPOSITION IS A KEY FATE PROCESS
- 2. Surface Affinity in complex media can be measured using programmed mixing procedure
- 3. LIMITATION- FOR PRACTICAL PURPOSES, ONLY VARIES OVER 4 ORDERS OF MAGNITUDE
- 4. SURFACE AFFINITY APPEARS TO BE IMPORTANT FOR SOME ASPECTS OF NANOPARTICLE REACTIVITY AND PERHAPS BIOAVAILABILITY
- 5. NEED REFERENCE SYSTEMS

