

ROADMAP FOR THE DEVELOPMENT OF NANOCELLULOSE AS A SUSTAINABLE NANOMATERIAL

JO ANNE SHATKIN

SUSTAINABLE NANOTECHNOLOGY ORGANIZATION SANTA BARBARA, CA NOVEMBER 04, 2013

Objectives

- Approach NANO Life Cycle Risk Framework
- Exposure: market analysis of nanocellulose
 - Methodology
 - Volume estimates
 - Implications for Exposure and Research Needs
- Toxicology
- Outline the roadmap to sustainable development

NANO LCRA for Nanocellulose Iterative Risk Assessment

Environmental Market Drivers

Retailer demand	Regulatory
Light-weighting to improve fuel efficiency	Café standards
Energy Efficiency	Stretch codes; building codes
Bio-based materials	Shopping bag/water bottle bans
Greener Consumer Products	EU Directive –vehicle recycling
Carbon Dioxide targets	
Renewable/compostable	Landfill bans/ recycling targets

Targeted Applications

HIGH VOLUME		NOVEL and Emerging APPLICATIONS
Cement	Wallboard Facing	Sensors – medical, environmental, industrial
Automotive Body	Insulation	Reinforcement fiber - construction
Automotive Interior	Aerospace Structure	Water filtration
Packaging Coatings	Aerospace Interiors	Air filtration
Paper Coatings	Aerogels for the Oil and Gas Industry	Viscosity modifiers
Paper Filler	Paint-Architectural	Purification
Packaging Filler	Paint-Special Purpose	Cosmetics
Replacement -Plastic Packaging	Paint -OEM Applications	Excipients
Plastic Film Replacement		Organic LED
Hygiene and Absorbent Products	5	Flexible Electronics
Textiles for Clothing		Photovoltaics
		Recyclable Electronics
		3D printing
		Photonic Films

Volume Estimates

Vol = M *NC content* MP

M = recent market size NC Content = % nanocellulose MP = market penetration rate

Market Study Assumptions

- Recent research reports/expert network to identify target applications
- Current market size is maintained (no growth)
- Commercialization within the next 3-12 years
- Dry yield 40%
- Cost competitive with current alternatives
- Technical issues addressed
- No barrier to adoption

Adding Nanocellulose to Cement

- 0.5% adds 20% to strength; allows 17% less cement in concrete
- Global cement market volume is 3.3 Billion TPY
 - Weight addition of 0.5% CNC (Cao et al. 2013) >>>
 16.5 million tonnes CNC
- This study U.S. adoption for ultra-high performance structural cement market – prestressed and pre-treated only (5.7 M tonnes cement >> 21,000 tonnes CNC @75% market penetration)

Estimated Market Penetration Rates - High Volume Applications

Exposure Scenarios

- Worker
 - inhalation exposure to dry particles
 - Manipulating composites
- Consumer
 - Dermal
 - Food contact
 - Shredding/recycling
- Environmental
 - Water; waste; recycling

TOXICITY ENDPOINTS

HEALTH EFFECTS

Exposure Duration	Study	Material	Inmuno.	Cytotoxicity	Neuroto	Genotov:	Carcinoc	Lethalis.	Systeric	Pulmo	Cardio.	Dermon Dermon	Under	Shing
	Vartiainen, et al (2011)	СМС	$\checkmark \bigtriangledown$	\bigtriangledown										
	(2011)	CMF	$\mathbf{\nabla}$	\bigtriangledown										
	Norppa (2012)	CNF	•	۲	×	00			×					
Acute	Ferraz, et al (2012)	CNF-PPy (as-is)	X											
		CNF-PPy (aged)	X											
	Pitkänen, et al (2010)	Whisker-type UFC		•\$		*								
		CNF		♦ ⊗ ◇		+								
Subchronic														
Chronic														

SYMBOL	ASSAY ORGANISM	SYMBOL	ASSAY ORGANISM
\bigtriangledown	Mouse macrophage	+	Bacterial Ames Test
▼	Human macrophage	\odot	Human cervix carcinoma cells & Boar sperm
	Human fibroblast		Human macrophage
X	Human monocyte	0	Human bronchial epithelial cells
	In vivo mouse	\otimes	Human bronchial epithelial cells
•	Human keratinocyte	\otimes	In vivo mouse
\diamond	Human cervix carcinoma cells	×	Nematode-C. elegans
\diamond	Mouse hepatoma	~	Cartaentoe Marco

IN VITRO ASSAYS

TOXICITY ENDPOINTS

HEALTH EFFECTS

					107										10
Pathway	Exposure Duration	Study	Material	Immuno	Cytotoxicity	Neuroton.	Genotov:	Carcinor	Lethais	Syster	Pulmo	Cardio	Dermon Scular	Underl	Shirt
INHALATION															
	Acute														
Occupational	Subchronic														
	Chronic														
	Acute	Pitkänen, et al (2010)	CNF	\otimes			\otimes				\otimes				
General Population	Subchronic														
	Chronic														
INGESTION/DERMAL															
	Acute														
Occupational	Subchronic														
	Chronic														
	Acute														
General Population	Subchronic														
	Chronic														
INJECTION															
	Acute	Ferraz, et al (2012)	CNF-PPy												
General Population	Subchronic	[[2012]	CINF-FFY												
	Chronic														

State of the Science on Safety

Weight-of-Evidence

- In general, several studies indicate CNC and CNF nanocelluloses *non-toxic* based on available data
- But, more complete data sets are needed
 - Longer term studies
 - More materials
 - Additional endpoints

Knowledge gaps

- Comparative data (Weight of Evidence)
- Functionalized or modified material data
- Data on composites/products
- Occupational inhalation data
- Consumer /environmental exposure data
- Nano-specific standards
- Standardized measurements
- Validated methods

EHS Priorities

- Safe Handling Processes
- International Safety
 Standards Development
- Sustainability
 Assessment and
 Certification

Cellulosic Nanomaterial EHS Roadmap

1. Methods to assess occupational and environmental impacts

a) Occupational safety guidelines

- 1. Material handling; labeling; disposal; research
- 2. Assess and build on existing wood dust/cellulose standards

b) Develop exposure assessment & testing procedures

- 1. Estimate exposure levels through modeling
- 2. Assessment and measurement methods for air, water, other media
- 3. Migration studies
- c) Verify/"validate" toxicology testing
 - 1. Confirm *in vitro* tests valid for nanocellulose
 - 2. Assess additional exposure pathways/scenarios
 - 3. Criteria for new assessments (e.g. size distribution; functionalization)

Cellulosic Nanomaterial EHS Roadmap (2)

2. Develop/adopt <u>Standardized EHS Methods</u>

a) Sampling and Measurement Standards Development

- 1. Develop sampling protocols, including sample preparation
- 2. Develop test approaches for different materials and applications

b) Occupational Exposure Standards

a) Guidance for sampling and worker protection

c) Environmental Impact Standards

- 1. Guidance for monitoring environmental impacts
- 2. Measurement methods for air, water, other media
- 3. Decision tree analysis

d) Consumer Product Standards

1. Guidance for testing nano-enabled products

Cellulosic Nanomaterial Roadmap (3)

3. Sustainability Measurements

a) Process impacts

- 1. Chemical use and disposal
- 2. Energy consumption
- 3. Carbon impacts

b) Life cycle comparisons with alternatives

- 1. Select applications
- 2. Develop data for LCIA
- 3. Build database and models

c) **Establish certification standards**

- 1. Draft standards
- 2. Convene stakeholders to vet and approve
- 3. Publish standards

Thank you

Jo Anne Shatkin, Ph.D. President

jashatkin@vireoadvisors.com

PERSPECTIVES IN NANOTECHNOLOGY

Nanotechnology Health and Environmental Risks Second Edition

Jo Anne Shatkin

Recent Analysis of Patent Applications for Wood-based Nanocelluloses

- 10% Paper Coating
- 8% Paper Furnish
- 22% Composites
- 9% Film

[Source Salmenkivi 2013]

Alternative U.S. Acreage Estimates of Cellulose Needed*

	Green Tons/ Acre	Acres per Year	Hectares
Plantation grown trees	470	183,000	72,000
NATURAL FORESTS	92	935,000	370,000
Forest restoration "thinnings"	22	3,900,000	1,500,000

*Assuming 100% from virgin wood pulp

