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Maynard A, Nature, 444, 267-269, 2006

Societal Impact of NanoTechnology

New consumer products

Over 2,700 types of nanomaterials (Nanowerk Nanomaterial Database, accessed Oct 4 2011)



Conventional assay

(Animal Model)

Time 32 Years for the chemicals so far 

Cost US$14 billion/year 1

Animal ethics 100 million experimental animals 

are used every year for 

toxicological studies2

Relevance to 

human safety

Differences between animal and 

human responses to 

chemicals/material 1, 2

“Out of 80,000 chemical s registered in 

USA, only 200+ has undergone systematic 

toxicity testing out of which only  five has 

been banned” (Toxic America, CNN). 

How to test nanotox effects? Lessons from 

Conventional Chemical Safety Assessment

1.  Nature 2009, 460, 208-212

2.Environmental Health Perspectives, 1999, pp. 83-88 



100’s/year 1000’s/year 10,000’s/day 100,000’s/day

High Throughput Bacterial,
Cellular, Yeast, Embryo or  
Molecular  Screening 

Immediate Relevance

Prioritize in vivo testing

at increasing trophic levels

US National Academy of Science (NAS) Report 

(2007): “Toxicity Testing in the 21st Century: A 

Vision and a strategy”
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http://images.google.com/imgres?imgurl=http://www.sih.m.u-tokyo.ac.jp/chem1.gif&imgrefurl=http://www.sih.m.u-tokyo.ac.jp/chemi.html&h=210&w=313&sz=72&tbnid=jo_uhGeOKQQJ:&tbnh=75&tbnw=113&hl=en&start=1&prev=/images%3Fq%3Dc%2Belegans%26svnum%3D10%26hl%3Den%26lr%3D


Cellular or Bio-molecular 
Injury Endpoints

Up to 105 measurements per day

Maximum of 102 animals

per experiment (weeks to months)

In Vivo Adverse Outcomes

Material 

physicochemical

properties

Validity of

predictions
• mechanism of injury

• toxicological pathway

We use a predictive toxicological approach for 

nanomaterial hazard testing 

Meng, Xia, et al. ASC Nano, 2009



Tools to Develop Predictive Toxicology: Composition and 

Property-based Nanomaterial Libraries

TiO2, ZnO, CuO, NiO,

Cr2O3 etc
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RE Oxides

Amorphous
Fumed

Crystalline
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Silica

SWCNT

MWCNT

fCNT

Carbon Nanotubes

Compositions

Godwin et al, EST. 2009

Thomas et al. ACS Nano. 2011

Nel et al. Small. 2012
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Cu, Ag, Pt, Co

Metals

CeO2, GdO3, La2O, SbO3

etc



Mitochondrial damage 

ROS generation

Stress response 

Cellular apoptosis

Reporter genes for 

sublethal effects

Cell growth

Assessment of Inflammation

RBC lysis

Tools: Cellular High Throughput Screening

George et al. ACS Nano. 2010

George et al. ACS Nano. 2011

Nel et al. ACR. 2012



HTS NP

Data
Pre-processing

Heat-maps

Self-organizing maps

data normalization

Feature analysis

Exploration
Structure-activity 

analysis
Model

validation

Incremental learning

Similar behavior

(Cluster)

Nanoparticle Phys-

Chem descriptors

In vitro to in vivo

predictions

Structure-activity

relationships

Safe by

design

NP

descriptors

Bio-catalytic 

responses

New data

Quantitative

Structure-activity 

analysis

Tools: High Content Data exploration and SAR 

modeling

Liu et al. Small. 2011

Rallo et al. EST. 2011

Damoiseaux et al.  Nanoscale. 2011



Use of Metal Oxide Band gap to pursue
A High Throughput  Predictive Toxicological

Paradigm for Oxidative Stress

Semiconductor
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•NADP/NADPH

•Ox/red cyt c

etc
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Zhang et al. ACS Nano. 2012



ROS
[Ca2+]i

Mitochondria

Gene activation

↓MMP

Lysosomes

Caspase
activation

Apoptosis

Cytokines
Chemokines

Membrane
leakage

Nel et al. Science. 2006
George et al, ACS Nano. 2010
George et al, ACS Nano. 2011
Zhang et al. ACS Nano .2012

Tier 2
Inflammation

NF-kB and MAPK
mediated

Tier 3
Toxicity

Tier 1
Anti-oxidant defense

Nrf2 mediated

Normal

Hierarchical Oxidative Stress Paradigm

A Multi-parameter Assay that was built on an Oxidative Stress Paradigm

http://4.bp.blogspot.com/_TZ4zYEBSw1I/SKCg7PI9QPI/AAAAAAAAFWQ/UXEIBLtD9Qc/s1600-h/nano_clusters_4.jpg
http://4.bp.blogspot.com/_TZ4zYEBSw1I/SKCg7PI9QPI/AAAAAAAAFWQ/UXEIBLtD9Qc/s1600-h/nano_clusters_4.jpg


384 well plate

ZnOCeO2TiO2

Nuclear area

Loss of MMP

Cellular Ca

PI Uptake

In vitro Multi-parametric High Throughput Screening Assays
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In vivo acute pulmonary inflammation in C57 Bl/6 mice.
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Dissolution in BEGM < 13.05

Al2O3, CeO2, 

Gd2O3, HfO2, 
In2O3, La2O3,
NiO, Sb2O3,

SiO2, SnO2, 
TiO2, Yb2O3,

Y2O3, ZrO2
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Ec < -4.80
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Regression Tree

Metal dissolution in BEGM < 13.05 
Area under LDH curve

ToxicSafe

7.00.5

Regression tree analysis for the toxicological impact of metal 
dissolution versus conduction band energy.



CNT Physicochemical Properties that could determine

Disease outcome

armchair, zigzag ,chiral

SWCNT/MWCNT

Surface Defects

Different  electronic

properties

Surface functionalities

Surface coatings

Google images



IL-1βPro-IL-1β

Cathepsin B

Lysosome

Long Aspect Ratio ENMs 

(SWCNTs, MWCNTs)

Inflammasome:

• NLRP3

• ASC

• Caspase 1

ROS

K+ effluxK+

ATP

Nucleus

Inflammasome

IL-1β

lysosome

Macrophage 
CNTs

Pre-IL-1β

IL-1β

Use of the Macrophage to develop a Predictive

Toxicological Paradigm for Lung Damage

Wang et al. ACS Nano. 2010

Wang et al ACS Nano. 2011

Undamaged lysomes Damaged

lysomes



Type I 

epithelium

Macrophage

Fibroblast

Proliferation

IL-1β

Collagen

Deposition

Fibroblast

Proliferation

TGF-β1

PDGF AA

Bronchiolar

epithelium

MWCNT

TGF-β1

PDGF BB

BAL Fluid Biomarkers

Day   1:  IL-1β

Day 7-21:  TGF-β1

 PDGF-AA

In vitro

Tubes with

Harmful

Characteristics

 IL-1β  TGF-β1

Macrophage Epithelial cells

Co-culture

 PDGF

Lung

Collagen

Deposition

Normal

Quantifiable Cooperative Cellular Interactions as Biomarkers for CNT 

Disease Pathogenesis in the Lung



COOH-MWCNTs (-)

sw-NH2-MWCNTs (++)

NH2-MWCNTs (+/-)

PEG-MWCNTs (-)

PEI-MWCNTs (+++)

AP-MWCNTs

In-House Synthesis of Covalently Functionalized MWCNTs

Li et al. ACS Nano, DOI 10.1021/nn305567s
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High Content Screening using Cellular Biomarkers to

show Pro-fibrinogenic Potential of functionalized CNTs

Li R. et al ACS Nano. 2013
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AP COOH
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MWCNTs induced collagen deposition in animal lungs



Epithelia, macrophage, 

fibroblast trophic cell unit

Cathepsin B

Lysosome

-sw-NH2

-NH2

-PEI

+f-

TGF-β1  , PDGF  

lung fibrosis

Lysosome injury Intact lysosome

Lysosome

PF108-CNTsBSA-CNTs

In vitro

In vivo

Mechanism of Carbonaceous NMs Toxicological Effects

NALP3 inflammasome activation
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Carbonaceous Nanomaterials Libraries
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1. Wang. et al. ACS Nano, 2010, 4 (12): 7241–7252.

2. Wang. et al. ACS Nano, 2011, 5 (12): 9772–9787. 

3. Wang. et al. Nano Letters, 2012, 12 (6): 3050–3061.

4. Li. et al. ACS Nano, 2013, 7 (3): 2352–2368. 



Predictive Toxicology allows Large Numbers of Materials to be 

grouped into Hazard and Mechanistic Categories

CeO2 Gd2O3

La2O  Sb2O3

Yb2O3  Y2O3

etc
George e al. ACS Nano. 2010

Xia et al. ACS Nano. 2011

Zhang et al. ACS Nano. 2012

Nel et al. ACR. 2012

lung injury

SWCNT & MWCNT

Libraries (>5 batches)

Lysome injury

Harmful SARs
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Questions?
Nanomaterial libraries High throughput screening Animal testing
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