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Societal Impact of NanoTechnology

New consumer products
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Over 2,700 types of nanomaterials (Nanowerk Nanomaterial Database, accessed Oct 4 2011)

Maynard A, Nature, 444, 267-269, 2006



How to test nanotox effects? Lessons from
Conventional Chemical Safety Assessment

“Out of 80,000 chemical s registered in
USA, only 200+ has undergone systematic
toxicity testing out of which only five has
been banned” (Toxic America, CNN).

Conventional assay
(Animal Model)

Time 32 Years for the chemicals so far

Cost US$14 billion/year *

Animal ethics 100 million experimental animals
are used every year for
toxicological studies?

Relevance to Differences between animal and

human Safety huma_n response_s to
chemicals/material 1 2

1. Nature 2009, 460, 208-212
2.Environmental Health Perspectives, 1999, pp. 83-88




US National Academy of Science (NAS) Report
(2007): “Toxicity Testing in the 21st Century: A
Vision and a strategy”

High Throughput Bacterial,
Cellular, Yeast, Embryo or
Molecular Screening

Prioritize in vivo testing
at increasing trophic levels
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We use a predictive toxicological approach for
nanomaterial hazard testing

In Vivo Adverse Qutcomes

Maximum of 10?animals
per experiment (weeks to months)

S
o
Material

Val(;(_jlty of physicochemical * mechanism of injury
predictions oroperties - toxicological pathway

%\ /
Cellular or Bio-molecular

Injury Endpoints

Up to 10° measurements per day

Meng, Xia, et al. ASC Nano, 2009



Tools to Develop Predictive Toxicology: Composition and
Property-based Nanomaterial Libraries

Size

Compositions

Surface

Transition MOXx Shape Functionalization
AR 4
TiO,, ZnO, CuO, NiO,
CI’203 etc
RE Oxides

Ce0,, GdO,, La,0, ShO,

etc

&) )
6§ e
Metals Crystal 8828! Surface Charge
Structure
Cu, Ag, Pt, Co
Carbon Nanotubes
SWCNT
MWCNT iy
(CNT Band Surface
Gap chemistry
Silica 0
Amorphous Dissolption
Fume(_i Godwin et al, EST. 2009 chemistry Nel et al. Nature Materials. 2008
Crystalline Thomas et al. ACS Nano. 2011 Xia et al. ACS Nano. 2008

Mesoporous Nel et al. Small. 2012 George et al. ACS Nano. 2011 6



Tools: Cellular High Throughput Screening
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Mitochondrial damage
ROS generation

Stress response
Cellular apoptosis

Cell growth RBC lysis

Reporter genes for
sublethal effects

Detection Ab __} 5 G **
wobansogf ¥ 78 S George et al. ACS Nano. 2010
W X Y i Y N Ay George et al. ACS Nano. 2011
U Ty "‘|"“]|' | Nel et al. ACR. 2012

Caphﬂe Ab \Spot on glass slide
Assessment of Inflammation



Tools: High Content Data exploration and SAR
modeling

New data ‘l'
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Liu et al. Small. 2011
Rallo et al. EST. 2011
Damoiseaux et al. Nanoscale. 2011



Use of Metal Oxide Band gap to pursue
A High Throughput Predictive Toxicological

Paradigm for Oxidative Stress

Energy
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Zhang et al. ACS Nano. 2012
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TEM images for 24 metal oxide nanoparticles

CuO Co;0 Cr,0, CeO, CoO

100 nm

La,0,



Prediction of MOXx Toxicity based on Bandgap Energy
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A Multi-parameter Assay that was built on an Oxidative Stress Paradigm

Hierarchical Oxidative Stress Paradigm
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In vitro Multi-parametric High Throughput Screening Assays
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Heatmap for metal oxides in lung epithelial cell BEAS-2B
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Regression tree analysis for the toxicological impact of metal
dissolution versus conduction band energy.

Regression Tree
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CNT Physicochemical Properties that could determine
Disease outcome

Google images
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Further modification
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Use of the Macrophage to develop a Predictive
Toxicological Paradigm for Lung Damage

Long Aspect Ratio ENMs
Macrophage
CNTs Phag IL-1B (SWCNTs, MWCNTSs)
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Quantifiable Cooperative Cellular Interactions as Biomarkers for CNT
Disease Pathogenesis in the Lung

Type |

J—_\ epithelium
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In-House Synthesis of Covalently Functionalized MWCNTs
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High Content Screening using Cellular Biomarkers to
show Pro-fibrinogenic Potential of functionalized CNTs
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MWCNTs induced collagen deposition in animal lungs
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Carbonaceous Nanomaterials Libraries
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Wang. et al. ACS Nano, 2010, 4 (12): 7241-7252.
Wang. et al. ACS Nano, 2011, 5 (12): 9772-9787.
Wang. et al. Nano Letters, 2012, 12 (6): 3050-3061.
Li. et al. ACS Nano, 2013, 7 (3): 2352-2368.
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Mechanism of Carbonaceous NMs Toxicological Effects
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Predictive Toxicology allows Large Numbers of Materials to be
grouped into Hazard and Mechanistic Categories

Transition MOx’s (>30) High and Low Temp Silicas SWCNT & MWCNT
(>5 Si types) Libraries (>5 batches)
£ poy ?/H'.,?/H-.,?/H ?/H

A|203, Hf02 O/T\O/T\o/ i\o/ i\0

In203, NIO 0 o o o

Sno,, TiO, o

ZrO Strained siloxane H-bonded
2 etc . .
rings silanols
VB Oxidative Inflamma-
stress tion A
B::)
CeO, Gd,O
La,0 Sb,O,

George e al. ACS Nano. 2010
ete Xia et al. ACS Nano. 2011

Ostwald Ripening
. Zhang et al. ACS Nano. 2012 )
Rare Earth Oxides (>10) Nel et al. ACR. 2012 LAR Metal oxides (2)
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Questions?

Nanomaterial libraries High throughput screening ‘Animal testing
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